Abstract Title:

Zinc supplementation attenuates ethanol- and acetaldehyde-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS) production and by influencing intracellular signaling.

Abstract Source:

Biochem Pharmacol. 2009 Aug 1;78(3):301-14. Epub 2009 Apr 17. PMID: 19376089

Abstract Author(s):

Agnieszka Szuster-Ciesielska, Krzysztof Plewka, Jadwiga Daniluk, Martyna Kandefer-Szerszeń


BACKGROUND/AIMS: Zinc has been reported to prevent and reverse liver fibrosis in vivo; however, the mechanisms of its action are poorly understood. We therefore aimed to determine the antifibrotic potential of zinc. METHODS: Assessed was the influence of preincubation of rat HSCs with 30 microM ZnCl2 on ethanol- (in the presence of 4-methyl pyrazole (4-MP)) or acetaldehyde-induced toxicity, apoptosis, migration, expression of smooth muscle alpha-actin (alpha-SMA) and procollagen I, release of reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-alpha), tumor growth factor-beta1 (TGF-beta1), metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases (TIMPs) production. Intracellular signals such as nuclear factor-kappaB (NFkappaB), C-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) induced by ethanol and its metabolite were also assessed. RESULTS: 30 microM zinc protected HSCs against ethanol and acetaldehyde toxicity and inhibited their apoptosis. Zinc inhibited the production of ROS by HSCs treated with ethanol and acetaldehyde and inhibited their migration. Zinc also inhibited ethanol- and acetaldehyde-induced TGF-beta1 and TNF-alpha production. Zinc down-regulated ethanol- and acetaldehyde-induced production of TIMP-1 and TIMP-2 and decreased the activity of MMP-2. In ethanol- and acetaldehyde-induced HSCs, zinc inhibited the activation of the p38 MAPK as well as the JNK transduction pathways and phosphorylation of IkappaB and Smad 3. CONCLUSION: The results indicated that zinc supplementation inhibited ethanol- and acetaldehyde-induced activation of HSCs on different levels, acting as an antioxidant and inhibitor of MAPK, TGF-beta and NFkappaB/IkappaB transduction signaling. The remarkable inhibition of several markers of HCS activation makes zinc a promising agent for antifibrotic combination therapies.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.