n/a
Article Publish Status: FREE
Abstract Title:

The Mechanism of Xiaoyao San in the Treatment of Ovarian Cancer by Network Pharmacology and the Effect of Stigmasterol on the PI3K/Akt Pathway.

Abstract Source:

Dis Markers. 2021 ;2021:4304507. Epub 2021 Jun 29. PMID: 34306252

Abstract Author(s):

Meng Li, Wenqi Zhang, Linqi Yang, Huibing Wang, Yihan Wang, Kai Huang, Wei Zhang

Article Affiliation:

Meng Li

Abstract:

Purpose: This study was aimed at exploring the regulatory mechanism of Xiaoyao San (XYS) and its main compound, Stigmasterol, in the biological network and signaling pathway of ovarian cancer (OC) through network pharmacology-based analyses and experimental validation.

Methods: The active compounds and targets of XYS were studied by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The GeneCards and OMIM databases were used to screen common targets of XYS in the treatment of OC. Combined with the STRING database and Cytoscape 3.6.0, the core compounds and targets of XYS were obtained. GO and KEGG pathway enrichment analyses of core target genes were carried out by using the Metascape and DAVID databases. Molecular docking has been achieved by using the AutoDock Vina program to discuss the interaction of the core targets and compounds of XYS in the treatment of OC. The effect of Stigmasterol on proliferation and migration were assessed by CCK8 and wound healing assay. Western blot and qRT-PCR were used to analyze the protein and mRNA expressions of PI3K, Akt, and PTEN after treatment of Stigmasterol.

Results: A total of 113 common targets of XYS for the treatment of OC were obtained from 975 targets related to OC and 239 targets of XYS's effect. The main compounds of XYS include Quercetin, Naringenin, Isorhamnetin, and Stigmasterol, which mainly regulate the targets such as TP53, Akt1, and MYC and PI3K/Akt, p53, and cell cycle signal pathways. At the same time, molecular docking showed that Stigmasterol and Akt1 had good docking conformation. Stigmasterol inhibited OC cell proliferation and migration in vitro and reduced the protein and mRNA expressions of the PI3K/Akt signaling pathway.

Conclusion: Stigmasterol as the one of the main compounds of XYS suppresses OC cell activities through the PI3K-Akt signaling pathway.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.