n/a
Article Publish Status: FREE
Abstract Title:

Quercetin Mediated Salt Tolerance in Tomato through the Enhancement of Plant Antioxidant Defense and Glyoxalase Systems.

Abstract Source:

Plants (Basel). 2019 Jul 25 ;8(8). Epub 2019 Jul 25. PMID: 31349715

Abstract Author(s):

Khursheda Parvin, Mirza Hasanuzzaman, M H M Borhannuddin Bhuyan, Sayed Mohammad Mohsin, And Masayuki Fujita

Article Affiliation:

Khursheda Parvin

Abstract:

Quercetin (Qu) is a strong antioxidant among the phenolic compounds having physiological and biochemical roles in plants. Hence, we have studied the Qu evolved protection against salinity in tomato (L.). Salinity caused ionic toxicity by increasing Nacontent in seedlings along with nutritional starvation of K, Ca, and Mg. While osmotic stress was detected by higher free proline (Pro) content and lower leaf relative water content (LRWC) in salt-stressed seedlings. Salt toxicity also induced higher HOgeneration, malondialdehyde (MDA) content and lipoxygenase (LOX) activity as a sign of oxidative stress. Tomato seedlings suffered from methylglyoxal (MG) toxicity, degradation of chlorophyll, along with lower biomass accumulation and growth due to salt exposure. However, Qu application under salinity resulted in lower Na/Kdue to reduced Nacontent, higher LRWC, increased Pro, and reduction of HOand MDA content, and LOX activity, which indicated alleviation of ionic, osmotic, and oxidative stress respectively. Quercetin caused oxidative stress, lessening through the strengthening of both enzymatic and non-enzymatic antioxidants. In addition, Qu increased glutathione-transferase activity in salt-invaded seedlings, which might be stimulated reactive oxygen species (ROS) scavenging along with higher GSH content. As a result, toxic MG was detoxified in Qu supplemented salt-stressed seedlings by increasing both Gly I and Gly II activities. Moreover, Qu insisted on better plant growth and photosynthetic pigments synthesis in saline or without saline media. Therefore, exogenous applied Qu may become an important actor to minimize salt-induced toxicity in crops.

Study Type : Plant Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.