n/a
Article Publish Status: FREE
Abstract Title:

Procyanidin B2 inhibits lipopolysaccharide‑induced apoptosis by suppressing the Bcl‑2/Bax and NF‑κB signalling pathways in human umbilical vein endothelial cells.

Abstract Source:

Mol Med Rep. 2021 Apr ;23(4):1. Epub 2021 Feb 12. PMID: 33576443

Abstract Author(s):

Da-Qiang Song, Jiao Liu, Fang Wang, Xiao-Fang Li, Ming-Hua Liu, Zhuo Zhang, Shou-Song Cao, Xian Jiang

Article Affiliation:

Da-Qiang Song

Abstract:

Human umbilical vein endothelial cells (HUVECs) serve a critical role in maintaining normal vascular function. Lipopolysaccharide (LPS), which is released from pathogenic bacteria in the blood, induces HUVEC apoptosis and injury to cause vascular dysfunction and infectious vascular diseases. Procyanidin B2 (PB2) possesses numerous functions, including antioxidant, antitumor, anti‑inflammatory and antiapoptosis effects, but the molecular mechanism is not completely understood. The present study investigated the effects of PB2 on LPS‑induced cytotoxicity and apoptosis in HUVECs, as well as theunderlying mechanisms. The effects of PB2 on LPS‑mediated alterations to cytotoxicity, mitochondrial membrane potential, apoptosis were assessed by performing Cell Counting Kit‑8, JC‑1 fluorescence, Hoechst 33258 staining assays, respectively. IL‑1β, IL‑6 and TNF‑α mRNA expression andprotein levels were measured by performing reverse transcription‑quantitative PCR and ELISAs, respectively. Bcl‑2, Bax, cleaved caspase‑3, cleaved caspase‑7, cleaved caspase‑9, phosphorylated (p)‑IκB‑α, p‑IκB‑β, p‑NF‑κB‑p65 and total NF‑κB p65 protein expression levels were determined via western blotting. NF‑κB p65 nuclear translocation was assessed via immunofluorescence. PB2 pretreatment markedly attenuated LPS‑induced cytotoxicity and apoptosis in HUVECs. PB2 also significantly downregulated the expression levels of IL‑1β, IL‑6, TNF‑α, Bax, cleaved caspase‑3, cleaved caspase‑7, cleaved caspase‑9 and p‑NF‑κB‑p65, but upregulated the expression levels of Bcl‑2, p‑IκB‑α and p‑IκB‑β in LPS‑induced HUVECs. Moreover, PB2 markedly inhibited LPS‑induced NF‑κB p65 nuclear translocation in HUVECs. The results suggested that the potential molecular mechanism underlying PB2 was associated with the Bax/Bcl‑2 and NF‑κB signalling pathways. Therefore, PB2 may serve as a useful therapeutic for infectious vascular diseases.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.