Article Publish Status: FREE
Abstract Title:

Paclitaxel and curcumin coadministration in novel cationic PEGylated niosomal formulations exhibit enhanced synergistic antitumor efficacy.

Abstract Source:

J Nanobiotechnology. 2018 Mar 23 ;16(1):28. Epub 2018 Mar 23. PMID: 29571289

Abstract Author(s):

Ashraf Alemi, Javad Zavar Reza, Fateme Haghiralsadat, Hossein Zarei Jaliani, Mojtaba Haghi Karamallah, Seyed Ahmad Hosseini, Somayeh Haghi Karamallah

Article Affiliation:

Ashraf Alemi


BACKGROUND: The systemic administration of cytotoxic chemotherapeutic agents for cancer treatment often has toxic side effects, limiting the usage dose. To increase chemotherapeutic efficacy while reducing toxic effects, a rational design for synergy-based drug regimens is essential. This study investigated the augmentation of therapeutic effectiveness with the co-administration of paclitaxel (PTX; an effective chemotherapeutic drug for breast cancer) and curcumin (CUR; a chemosensitizer) in an MCF-7 cell line.

RESULTS: We optimized niosome formulations in terms of surfactant and cholesterol content. Afterward, the novel cationic PEGylated niosomal formulations containing Tween-60: cholesterol:DOTAP:DSPE-mPEG (at 59.5:25.5:10:5) were designed and developed to serve as a model for better transfection efficiency and improved stability. The optimum formulations represented potential advantages, including extremely high entrapment efficiency (~ 100% for both therapeutic drug), spherical shape, smooth-surface morphology, suitable positive charge (zeta potential ~ + 15 mV for both CUR and PTX), sustained release, small diameter (~ 90 nm for both agents), desired stability, and augmented cellular uptake. Furthermore, the CUR andPTX kinetic release could be adequately fitted to the Higuchi model. A threefold and 3.6-fold reduction in CUR and PTX concentration was measured, respectively, when the CUR and PTX was administered in nano-niosome compared to free CUR and free PTX solutions in MCF-7 cells. When administered in nano-niosome formulations, the combination treatment of CUR and PTX was particularly effective in enhancing the cytotoxicity activity against MCF-7 cells.

CONCLUSIONS: Most importantly, CUR and PTX, in both free form and niosomal forms, were determined to be less toxic on MCF-10A human normal cells in comparison to MCF-7 cells. The findings indicate that the combination therapy of PTX with CUR using the novel cationic PEGylated niosome delivery is a promising strategy for more effective breast cancer treatment.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.