Abstract Title:

A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats.

Abstract Source:

Can J Physiol Pharmacol. 2020 Jan ;98(1):29-34. Epub 2019 Sep 19. PMID: 31536712

Abstract Author(s):

Anna Gvozdjáková, Jarmila Kucharská, Branislav Kura, Ol'ga Vančová, Zuzana Rausová, Zuzana Sumbalová, Ol'ga Uličná, Ján Slezák

Article Affiliation:

Anna Gvozdjáková


Mitochondria are the major source of cellular energy metabolism. In the cardiac cells, mitochondria produce by way of the oxidative phosphorylation more than 90% of the energy supply in the form of ATP, which is utilized in many ATP-dependent processes, like cycling of the contractile proteins or maintaining ion gradients. Reactive oxygen species (ROS) are by-products of cellular metabolism and their levels are controlled by intracellular antioxidant systems. Imbalance between ROS and the antioxidant defense leads to oxidative stress and oxidative changes to cellular biomolecules. Molecular hydrogen (H) has been proved as beneficial in the prevention and therapy of various diseases including cardiovascular disorders. It selectively scavenges hydroxyl radical and peroxynitrite, reduces oxidative stress, and has anti-inflammatory and anti-apoptotic effects. The effect of Hon the myocardial mitochondrial function and coenzyme Q levels is not well known. In this paper, we demonstrated that consumption of H-rich water (HRW) resulted in stimulated rat cardiac mitochondrial electron respiratory chain function and increased levels of ATP production by Complex I and Complex II substrates. Similarly, coenzyme Qlevels in the rat plasma, myocardial tissue, and mitochondria were increased and malondialdehyde level in plasma was reduced after HRW administration. Based on obtained data, we hypothesize a new metabolic pathway of the Heffect in mitochondria on the Q-cycle and in mitochondrial respiratory chain function. The Q-cycle contains three coenzyme Q forms: coenzyme Q in oxidized form (ubiquinone), radical form (semiquinone), or reduced form (ubiquinol). Hmay be a donor of both electron and proton in the Q-cycle and thus we can suppose stimulation of coenzyme Q production. When ubiquinone is reduced to ubiquinol, lipid peroxidation is reduced. Increased CoQconcentration can stimulate electron transport from Complex I and Complex II to Complex III and increase ATP production via mitochondrial oxidative phosphorylation. Our results indicate that Hmay function to prevent/treat disease states with disrupted myocardial mitochondrial function.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.