Abstract Title:

Human lactoferrin-derived peptide's antifungal activities against disseminated Candida albicans infection.

Abstract Source:

J Infect Dis. 2007 Nov 1;196(9):1416-24. Epub 2007 Oct 2. PMID: 17922408

Abstract Author(s):

Antonella Lupetti, Carlo P J M Brouwer, Sylvia J P Bogaards, Mick M Welling, Emile de Heer, Mario Campa, Jaap T van Dissel, Robert H E Friesen, Peter H Nibbering


BACKGROUND: Because the human lactoferrin-derived peptide, hLF(1-11), exerts potent in vitro candidacidal activity, we investigated whether it displays antifungal activity against disseminated Candida albicans infections. METHODS: Neutropenic mice were intravenously infected with C. albicans and, 24 h later, were injected with hLF(1-11); 18 h later, the number of viable yeasts in the kidneys was determined microbiologically, the size and number of infectious foci were determined histologically, and serum cytokine levels were determined by immunoassays. RESULTS: hLF(1-11) was effective (maximum reduction, 1.5 logs) against disseminated C. albicans infections, and its antifungal activity leveled off at a concentration of 0.4 ng of hLF(1-11)/kg of body weight. The antifungal activity of hLF(1-11) was increased in mice injected with interleukin (IL)-10 neutralizing antibodies, which suggests that IL-10 reduces the antifungal activity of hLF(1-11). In agreement with this result was the finding that injection of high doses of hLF(1-11) into infected mice was accompanied by increased levels of IL-10 in serum. Microscopic analysis revealed that infectious foci in kidneys of hLF(1-11)-treated mice contained mainly blastoconidia, whereas filamentous forms were abundant in untreated mice. The peptide inhibited the in vitro morphological transition of C. albicans, in a dose-dependent manner. : hLF(1-11) is effective against disseminated C. albicans infections; and its effects on C. albicans viability and virulence and on host cells may explain this antifungal activity.

Study Type : Animal Study

Print Options