n/a
Abstract Title:

Non-enzymatic conversion of primary oxidation products of Docosahexaenoic acid into less toxic acid molecules.

Abstract Source:

Spectrochim Acta A Mol Biomol Spectrosc. 2018 Oct 5 ;203:222-228. Epub 2018 May 26. PMID: 29870906

Abstract Author(s):

Arunaksharan Narayanankutty, Midhun K Gopinath, Muneera Vakayil, Smitha K Ramavarma, Thekkekara Devassy Babu, Achuthan C Raghavamenon

Article Affiliation:

Arunaksharan Narayanankutty

Abstract:

Docosahexaenoic acid (DHA) is long chain omega-3 fatty acid with known health benefits and clinical significance. However, 4-hydroxy hexenal (HHE), an enzymatic oxidation product of DHA has recently been reported to have health-damaging effects. This conflict raises major concern on the long-term clinical use of these fatty acids. Even though the enzymatic and non-enzymatic conversion of HHE to nontoxic acid molecules is possible by the aldehyde detoxification systems, it has not yet studied. To address this, primary oxidation products of DHA in lipoxidase system were subjected to non-enzymatic conversion at physiological temperature over a period of 1 week. The reaction was monitored using HPLC, IR spectroscopy and biochemical assays (based on the loss of conjugated dienes, lipid peroxides aldehydes). Short term and long term cytotoxicity of the compounds generated at various time points were analyzed. IR and HPLC spectra revealed that the level of aldehydes in the primary oxidation products reduced over time, generating acids and acid derivatives within a week period. In short term and long term cytotoxicity analysis, initial decomposition products were found more toxic than the 1-week decomposition products. Further, when primary oxidation products were subjected to aldehyde dehydrogenase mediated oxidation, it generated products that are also less toxic. The study suggests the possible non-enzymatic conversion of primary oxidation products of DHA to less cytotoxic acid molecules. Exploration of the physiological roles of these acid molecules may explain the biological potential of omega-3 fatty acids.

Study Type : Human In Vitro

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.