Abstract Title:

Correlation of increased mortality with the suppression of radiation-inducible microsomal epoxide hydrolase and glutathione S-transferase gene expression by dexamethasone: effects on vitamin C and E-induced radioprotection.

Abstract Source:

Biochem Pharmacol. 1998 Nov 15;56(10):1295-304. PMID: 9825728

Abstract Author(s):

S Y Nam, C K Cho, S G Kim

Article Affiliation:

College of Pharmacy, Duksung Women's University, Seoul, Korea.


Previous studies in this laboratory have shown that gamma-ray ionizing radiation in combination with oltipraz, a radioprotective agent, enhances hepatic microsomal epoxide hydrolase (mEH) and glutathione S-transferase (GST) expression. The present study was designed to investigate the effects of dexamethasone on the radiation-inducible expression of mEH and rGST genes and on the vitamin C and E-induced radioprotective effects in association with the expression of the genes. Treatment of rats with a single dose of dexamethasone (0.01-1 mg/kg, p.o.) caused a dose-dependent decrease in the constitutive mEH gene expression at 24 hr. The radiation-inducible mEH mRNA level (threefold increase after 3 Gy gamma-irradiation) was decreased by 21% and 88% by dexamethasone at the doses of 0.1 and 1 mg/kg, respectively. Although dexamethasone alone caused 2- to 5-fold increases in the hepatic rGSTA2 mRNA level, rats treated with dexamethasone prior to 3 Gy irradiation exhibited 80%-93% suppression in the radiation-inducible increases in the rGSTA2 mRNA level. The inducible rGSTA3 and rGSTA5 mRNA levels were also significantly decreased by dexamethasone, whereas the rGSTM1 mRNA level was reduced to a lesser extent. Vitamin C and/or E, however, failed to enhance the radiation-inducible increases in hepatic mEH and rGST mRNA levels. Whereas rats exposed to 3 Gy irradiation with or without vitamin C treatment (30 or 200 mg/kg/day, p.o., 2 days) exhibited approximately threefold increases in the mEH and rGSTA2/3/5 mRNA levels relative to untreated animals, dexamethasone treatment (1 mg/kg, p.o.) resulted in 64%-96% decreases in the mRNA levels at 24 hr. The inducible rGSTM1/2 mRNA levels in the vitamin C/E-treated rats were approximately 50% suppressed by dexamethasone. Although vitamin C and/or E treatment (200 mg/kg/day, p.o., 2 days) improved the 30-day survival rates of the 8 Gy gamma-irradiated mice from 39% up to 74%, the improved survival rate of gamma-irradiated animals was reduced to 30% by dexamethasone pretreatment (1 mg/kg/day, 2 days). The mean survival time of dexamethasone-treated animals was reduced to approximately 2 days from 14 days in the animals with total body irradiation alone. No significant hematologic changes were observed in mice at 10 days after dexamethasone plus gamma-irradiation, as compared with irradiation alone. These results demonstrate that: dexamethasone substantially suppresses radiation-inducible mEH, rGSTA and rGSTM expression in the liver; vitamins C/E exhibit radioprotective effects without enhancing radiation-inducible mEH and GST gene expression; and inhibition of radiation-inducible mEH and rGST gene expression in the vitamin C- and E-treated animals by dexamethasone was highly correlated with reduction in the survival rate and the mean survival time of gamma-irradiated animals.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.