n/a
Article Publish Status: FREE
Abstract Title:

Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway.

Abstract Source:

Sci Rep. 2017 Apr 11 ;7:46208. Epub 2017 Apr 11. PMID: 28397803

Abstract Author(s):

Evandro F Fang, Tyler B Waltz, Henok Kassahun, Qiping Lu, Jesse S Kerr, Marya Morevati, Elayne M Fivenson, Bradley N Wollman, Krisztina Marosi, Mark A Wilson, Wendy B Iser, D Mark Eckley, Yongqing Zhang, Elin Lehrmann, Ilya G Goldberg, Morten Scheibye-Knudsen, Mark P Mattson, Hilde Nilsen, Vilhelm A Bohr, Kevin G Becker

Article Affiliation:

Evandro F Fang

Abstract:

Aging is a major international concern that brings formidable socioeconomic and healthcare challenges. Small molecules capable of improving the health of older individuals are being explored. Small molecules that enhance cellular stress resistance are a promising avenue to alleviate declines seen in human aging. Tomatidine, a natural compound abundant in unripe tomatoes, inhibits age-related skeletal muscle atrophy in mice. Here we show that tomatidine extends lifespan and healthspan in C. elegans, an animal model of aging which shares many major longevity pathways with mammals. Tomatidine improves many C. elegans behaviors related to healthspan and muscle health, including increased pharyngeal pumping, swimming movement, and reduced percentage of severely damaged muscle cells. Microarray, imaging, and behavioral analyses reveal that tomatidine maintains mitochondrial homeostasis by modulating mitochondrial biogenesis and PINK-1/DCT-1-dependent mitophagy. Mechanistically, tomatidine induces mitochondrial hormesis by mildly inducing ROS production, which in turn activates the SKN-1/Nrf2 pathway and possibly other cellular antioxidant response pathways, followed by increased mitophagy. This mechanism occurs in C. elegans, primary rat neurons, and human cells. Our data suggest that tomatidine may delay some physiological aspects of aging, and points to new approaches for pharmacological interventions for diseases of aging.

Study Type : Animal Study
Additional Links
Pharmacological Actions : Antioxidants : CK(14410) : AC(5758)

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.