Abstract Title:

A therapeutic dose of zolpidem reduces thalamic GABA in healthy volunteers: a proton MRS study at 4 T.

Abstract Source:

Psychopharmacology (Berl). 2009 May;203(4):819-29. Epub 2009 Jan 6. PMID: 19125238

Abstract Author(s):

Stephanie C Licata, J Eric Jensen, David M Penetar, Andrew P Prescot, Scott E Lukas, Perry F Renshaw

Article Affiliation:

Behavioral Psychopharmacology Research Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA. slicata@mclean.harvard.edu

Abstract:

BACKGROUND: Zolpidem is a nonbenzodiazepine sedative/hypnotic that acts at GABA(A) receptors to influence inhibitory neurotransmission throughout the central nervous system. A great deal is known about the behavioral effects of this drug in humans and laboratory animals, but little is known about zolpidem's specific effects on neurochemistry in vivo. OBJECTIVES: We evaluated how acute administration of zolpidem affected levels of GABA, glutamate, glutamine, and other brain metabolites. MATERIALS AND METHODS: Proton magnetic resonance spectroscopy ((1)H MRS) at 4 T was employed to measure the effects of zolpidem on brain chemistry in 19 healthy volunteers. Participants underwent scanning following acute oral administration of a therapeutic dose of zolpidem (10 mg) in a within-subject, single-blind, placebo-controlled, single-visit study. In addition to neurochemical measurements from single voxels within the anterior cingulate (ACC) and thalamus, a series of questionnaires were administered periodically throughout the experimental session to assess subjective mood states. RESULTS: Zolpidem reduced GABA levels in the thalamus, but not the ACC. There were no treatment effects with respect to other metabolite levels. Self-reported ratings of "dizzy," "nauseous," "confused," and "bad effects" were increased relative to placebo, as were ratings on the sedation/intoxication (PCAG) and psychotomimetic/dysphoria (LSD) scales of the Addiction Research Center Inventory. Moreover, there was a significant correlation between the decrease in GABA and "dizzy." CONCLUSIONS: Zolpidem engendered primarily dysphoric-like effects and the correlation between reduced thalamic GABA and "dizzy" may be a function of zolpidem's interaction with alpha1GABA(A) receptors in the cerebellum, projecting through the vestibular system to the thalamus.

Study Type : Human Study
Additional Links

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.