Abstract Title:

Tetramethylpyrazine guards against cisplatin-induced nephrotoxicity in rats through inhibiting HMGB1/TLR4/NF-κB and activating Nrf2 and PPAR-γ signaling pathways.

Abstract Source:

Eur J Pharmacol. 2019 Aug 15 ;857:172422. Epub 2019 May 30. PMID: 31152701

Abstract Author(s):

Haidy E Michel, Esther T Menze

Article Affiliation:

Haidy E Michel


Cisplatin-induced acute renal injury is the most common and serious side effect, sometimes requiring discontinuation of the treatment. Thus, the development of new protective strategies is essential. The present study aimed to investigate the potential nephroprotective effect of tetramethylpyrazine (TMP) against acute renal damage induced by cisplatin in rats. Rats were administered 50 and 100 mg/kg TMP intraperitoneally before cisplatin (7 mg/kg). Acute nephrotoxicity was evident in cisplatin-treated rats where relative kidney weight, BUN and serum creatinine were markedly elevated. Cisplatin administration resulted in enhanced oxidative stress, evidenced by depleted GSH level as well as catalase and superoxide dismutase activities. Also, lipid peroxidation was boosted in comparison to the control. This was associated with inhibition of Nrf2 defense pathway. Moreover, cisplatin increased the expression of pro-inflammatory mediators in the kidney tissues. Cisplatin-induced apoptosis was depicted by elevated Bax mRNA expression and caspase-3 activity, as well as decreased Bcl2 mRNA expression. In addition, high mobility group box 1/toll-like receptor 4/nuclear factor-kappa B (HMGB1/TLR4/NF-κB) signaling pathway was significantly upregulated, while peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression was significantly diminished in cisplatin-treated rats. Cisplatin-induced nephrotoxicity, oxidative stress, inflammation, apoptosis and the effect on Nrf2 defense pathway and HMGB1/TLR4/NF-κB as well as PPAR-γ expression were markedly ameliorated by TMP administration. Given the major nephrotoxicity of cisplatin cancer chemotherapy, TMP might be a potential candidate for neoadjuvant chemotherapy due to its antioxidant, anti-inflammatory and anti-apoptotic effects, in addition to its effect on Nrf2, HMGB1/TLR4/NF-κB signaling pathway and PPAR-γexpression.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.