n/a
Abstract Title:

Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway.

Abstract Source:

Pharmacol Res. 2016 Nov 15 ;115:45-55. Epub 2016 Nov 15. PMID: 27864022

Abstract Author(s):

Xia Li, Xing-Xing Fan, Ze-Bo Jiang, Wings Ty Loo, Xiao-Jun Yao, Elaine Lai-Han Leung, Louis Wc Chow, Liang Liu

Article Affiliation:

Xia Li

Abstract:

Non-small cell lung cancer (NSCLC) is the dominant type of lung cancer. Molecular targeting has highly improved the treatment efficacy of lung cancer, but new challenges have emerged, such as gefitinib-resistance and cancer recurrence. Therefore, new chemotherapeutic agents and treatment strategies are urgently needed. Shikonin is the main active component of a Chinese medicinal plant 'Zi Cao', which has been shown to exhibit powerful anti-cancer activity in certain types of cancer; however, its activity in gefitinib-resistant lung cancer has never been addressed. In this study, we used a high-throughput screening assay for epidermal growth factor receptor (EGFR) inhibitors and discovered that Shikonin is a potent inhibitor of EGFR. The cytotoxicity of Shikonin and its anti-cancer mechanism in NSCLC was deeply explored. Shikonin exhibited selective cytotoxicity among two NSCLC cell lines (H1975 and H1650) and one normal lung fibroblast cell line (CCD-19LU). Shikonin significantly increased the activity of caspases and poly (ADP-ribosyl) polymerase (PARP), which are indicators of apoptosis, and the intensity of ROS by greater than 10-fold. NAC, an inhibitor of ROS, completely blocked apoptosis, caspase and PARP activation induced by Shikonin. Shikonin remarkably suppressed the phosphorylation of EGFR and led to EGFR degradation. The enhancement of ROS generation in H1650 and H1975 gefitinib-resistant NSCLC cells leads to impairment of growth and induction of apoptosis, whereas modulation of EGFR degradation and its downstream signalling pathways by Shikonin contributes to its anti-tumour properties in H1975 gefitinib-resistant NSCLC cells (with T790M and L858R activating mutations). Shikonin-induced cell apoptosis is closely associated with ROS elevation in the cells. These findings indicate that Shikonin can be an effective small molecule treating gefitinib-resistant NSCLC.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.