Protective effect of royal jelly against cyclophosphamide-induced thrombocytopenia and spleen and bone marrow damages. - GreenMedInfo Summary
Protective Effect of Royal Jelly against Cyclophosphamide-Induced Thrombocytopenia and Spleen and Bone Marrow Damages in Rats.
Cell J. 2020 Oct ;22(3):302-309. Epub 2019 Dec 15. PMID: 31863655
Fatemeh Khazaei
Objective: Despite the effective role of chemotherapy in cancer treatment, several side effects have been reported to date. For instance, Cyclophosphamide (CP) induces deleterious effects on both cancer and normal cells. Royal jelly (RJ) has a lot of beneficial properties, such as anti-oxidant and anti-inflammatory activities. The aim of the present study was to examine the protective effect of RJ against CP-induced thrombocytopenia, as well as bone marrow, spleen, and testicular damages in rats.
Materials and Methods: In this experimental study, 48 male Wistar rats were divided into six groups (n=8/group); control, CP, RJ (100 mg/kg), RJ (200 mg/kg), RJ (100 mg/kg)+CP, and RJ (200 mg/kg)+CP groups. RJ was administered orally for 14 days. Then, CP at concentrations of 100, 50, and 50 mg/kg was intraperitoneally injected at day 15, 16, 17, respectively. The animals were sacrificed three days after the last injection of CP. Hematological parameters, serum levels of platelet factor 4 (PF4), nitric oxide (NO), and ferric reducing antioxidant power (FRAP) were measured. Also, the pathological analysis of bone marrow, spleen, and testicles was assessed.
Results: CP caused a significant decrease in the number of platelets, white and red blood cells (P<0.001), as well as the levels of FRAP (P<0.01), whereas the serum levels of PF4 and NO were significantly increased. These detrimental alterations were significantly reversed to the baseline upon pretreatment of rats with RJ in the RJ100+CP and RJ200+CP groups (P<0.05). CP caused histological changes in bone marrow, spleen, and testes. Pretreatment with RJ showed noticeable protection against these harmful effects.
Conclusion: RJ prevented CP-induced biochemical and histological damages.