n/a
Article Publish Status: FREE
Abstract Title:

Oleocanthal Inhibits Catabolic and Inflammatory Mediators in LPS-Activated Human Primary Osteoarthritis (OA) Chondrocytes Through MAPKs/NF-κB Pathways.

Abstract Source:

Cell Physiol Biochem. 2018 ;49(6):2414-2426. Epub 2018 Sep 27. PMID: 30261513

Abstract Author(s):

Morena Scotece, Javier Conde, Vanessa Abella, Veronica López, Vera Francisco, Clara Ruiz, Victor Campos, Francisca Lago, Rodolfo Gomez, Jesús Pino, Oreste Gualillo

Article Affiliation:

Morena Scotece

Abstract:

BACKGROUND/AIMS: Oleocanthal (OC), a phenolic compound present in extra virgin olive oil (EVOO), has attracted attention since its discovery for its relevant pharmacological properties in different pathogenic processes, including inflammation. Here, we investigated the involvement of OC in LPS-activated osteoarthritis (OA) human primary chondrocytes.

METHODS: Human primary chondrocytes were harvested from articular cartilage samples obtained from OA patients. The effects of OC on the viability of chondrocytes were tested by MTT assay. Protein and mRNA expression of several catabolic and pro-inflammatory factors after OC treatment were measured by RT-qPCR and western blot respectively. Moreover, we analysed the NO production by Griess reaction. Finally, several pathways mediators were analysed by western blot.

RESULTS: We demonstrated that OC did not have any cytotoxic effect. Oleocanthal inhibited NO production and strongly decreased NOS2 and COX-2 protein and mRNA expression in LPS-activated human primary OA chondrocytes. Interestingly, OC also inhibits MMP-13 and ADAMTS-5. In addition, OC downregulates several pro-inflammatory factors, such as IL-6, IL-8, CCL3, LCN2 and TNF-α induced by LPS in human primary OA chondrocytes. Finally, we demonstrated that OC exerts its effects through the MAPK/P38/NF-kB pathways.

CONCLUSION: These data show that OC is able to block LPS-mediated inflammatory response and MMP-13 and ADAMTS-5 induction in human primary OA chondrocytes via MAPKs/NF-kB pathways, suggesting that OC may be a promising agent for the treatment of inflammation in cartilage and a potential molecule to prevent disease progression by inhibiting metalloproteases and aggrecanases.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.