n/a
Article Publish Status: FREE
Abstract Title:

Inhibition of PI3K/AKT/mTOR axis disrupts oxidative stress-mediated survival of melanoma cells.

Abstract Source:

Oncotarget. 2015 Mar 30 ;6(9):7195-208. PMID: 25749517

Abstract Author(s):

Heather G Hambright, Peng Meng, Addanki P Kumar, Rita Ghosh

Article Affiliation:

Heather G Hambright

Abstract:

Elevated oxidative stress in cancer cells contributes to hyperactive proliferation and enhanced survival, which can be exploited using agents that increase reactive oxygen species (ROS) beyond a threshold level. Here we show that melanoma cells exhibit an oxidative stress phenotype compared with normal melanocytes, as evidenced by increased total cellular ROS, KEAP1/NRF2 pathway activity, protein damage, and elevated oxidized glutathione. Our overall objective was to test whether augmenting this high oxidative stress level in melanoma cells would inhibit their dependence on oncogenic PI3K/AKT/mTOR-mediated survival. We report that NexrutineR augmented the constitutively elevated oxidative stress markers in melanoma cells, which was abrogated by N-acetyl cysteine (NAC) pre-treatment. NexrutineR disrupted growth homeostasis by inhibiting proliferation, survival, and colony formation in melanoma cells without affecting melanocyte cell viability. Increased oxidative stress in melanoma cells inhibited PI3K/AKT/mTOR pathway through disruption of mTORC1 formation and phosphorylation of downstream targets p70S6K, 4EBP1 and rpS6. NAC pre-treatment reversed inhibition of mTORC1 targets, demonstrating a ROS-dependent mechanism. Overall, our results illustrate the importance of disruption of the intrinsically high oxidative stress in melanoma cells to selectively inhibit their survival mediated by PI3K/AKT/mTOR.

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.