n/a
Article Publish Status: FREE
Abstract Title:

Neuroprotective Effects of Emodin against Ischemia/Reperfusion Injury through Activating ERK-1/2 Signaling Pathway.

Abstract Source:

Int J Mol Sci. 2020 Apr 21 ;21(8). Epub 2020 Apr 21. PMID: 32326191

Abstract Author(s):

Stephen Wan Leung, Jing Huei Lai, John Chung-Che Wu, Yan-Rou Tsai, Yen-Hua Chen, Shuo-Jhen Kang, Yung-Hsiao Chiang, Cheng-Fu Chang, Kai-Yun Chen

Article Affiliation:

Stephen Wan Leung

Abstract:

BACKGROUND: Stroke is one of the leading causes of death and disability worldwide and places a heavy burden on the economy in our society. Current treatments, such as the use of thrombolytic agents, are often limited by a narrow therapeutic time window. However, the regeneration of the brain after damage is still active days, even weeks, after stroke occurs, which might provide a second window for treatment. Emodin, a traditional Chinese medicinal herb widely used to treat acute hepatitis, has been reported to possess antioxidative capabilities and protective effects against myocardial ischemia/reperfusion injury. However, the underlying mechanisms and neuroprotective functions of Emodin in a rat middle cerebral artery occlusion (MCAO) model of ischemic stroke remain unknown. This study investigates neuroprotective effects of Emodin in ischemia both in vitro and in vivo.

METHODS: PC12 cells were exposed to oxygen-glucose deprivation to simulate hypoxic injury, and the involved signaling pathways and results of Emodin treatment were evaluated. The therapeutic effects of Emodin in ischemia animals were further investigated.

RESULTS: Emodin reduced infarct volume and cell death following focal cerebral ischemia injury. Emodin treatment restored PC12 cell viability and reduced reactive oxygen species (ROS) production and glutamate release under conditions of ischemia/hypoxia. Emodin increased Bcl-2 and glutamate transporter-1 (GLT-l) expression but suppressed activated-caspase 3 levels through activating the extracellular signal-regulated kinase (ERK)-1/2 signaling pathway.

CONCLUSION: Emodin induced Bcl-2 and GLT-1 expression to inhibit neuronal apoptosis and ROS generation while reducing glutamate toxicity via the ERK-1/2 signaling pathway. Furthermore, Emodin alleviated nerve cell injury following ischemia/reperfusion in a rat MCAO model. Emodin has neuroprotective effects against ischemia/reperfusion injury both in vitro and in vivo, which may be through activating the ERK-1/2 signaling pathway.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.