n/a
Abstract Title:

Myricetin prevents thapsigargin-induced CDK5-P66Shc signalosome mediated pancreaticβ-cell dysfunction.

Abstract Source:

Free Radic Biol Med. 2019 Sep ;141:59-66. Epub 2019 Jun 1. PMID: 31163256

Abstract Author(s):

Udayakumar Karunakaran, Ji Eun Lee, Suma Elumalai, Jun Sung Moon, Kyu Chang Won

Article Affiliation:

Udayakumar Karunakaran

Abstract:

Chronic endoplasmic reticulum (ER) stress has deleterious effects on pancreaticβ-cell function and survival in type 2 diabetes (T2D). Cyclin-dependent kinase 5 (CDK5) plays a critical role in β-cell failure under diabetic milieu conditions. However, little information is available on CDK5's ability to impair the function of β-cells via a chemical ER stress inducer thapsigargin. Myricetin, a natural flavonoid, has therapeutic potential for the treatment of type 2 diabetes mellitus. Therefore, we examined the effect of CDK5 on thapsigargin-induced β-cell apoptosis, and explored the relationship between myricetin and CDK5. Exposure of beta cells with thapsigargin, induced a Src-mediated redox signaling (VAV2-Rac1-NOX) formation and CDK5 activation. Activated CDK5 induced antiapoptotic protein myeloid cell leukemia sequence 1 (Mcl-1) degradation which was associated with p66Shc serine 36 phosphorylation, causing beta cell apoptosis via mitochondrial dysfunction. Exposure of beta cells to myricetin resulted in an acute inhibition of Src-mediated redox signaling (VAV2-Rac1-NOX) formation and CDK5 activation. Myricetin inhibited CDK5 activation by directly binding to its ATP-binding pocket. Treatment with myricetin also enhanced the stability of Mcl-1 after thapsigargin treatment. Inhibition of CDK5 with myricetin or roscovitine, a CDK5 inhibitor attenuates thapsigargin induced p66Shc serine 36 phosphorylation and also reduced mitochondrial dysfunction by decreasing mitochondrial ROS and caspase-3 activation. In addition, myricetin was observed to enhancePDX-1 and insulin mRNA expression and potentiate glucose stimulated insulin secretion (GSIS). Taken together, these findings indicate that thapsigargin-induced early molecular events lead to CDK5-p66Shc signalosome contributes to thapsigargin-induced pancreatic β-cell dysfunction. Myricetin blockedthapsigargin induced CDK5-p66Shc signalosome formation and prevented pancreatic beta cell dysfunction. In this study, we demonstrated for the first time that thapsigargin initiated CDK5-p66Shc signalosome mediates the pancreatic beta cell dysfunction and myricetin protects the pancreatic beta cellsthrough the inhibition of CDK5-p66Shc signalosome.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.