n/a
Article Publish Status: FREE
Abstract Title:

Myricetin improves endurance capacity by inducing muscle fiber type conversion via miR-499.

Abstract Source:

Nutr Metab (Lond). 2019 ;16:27. Epub 2019 May 2. PMID: 31073320

Abstract Author(s):

Luting Wu, Li Ran, Hedong Lang, Min Zhou, Li Yu, Long Yi, Jundong Zhu, Lei Liu, Mantian Mi

Article Affiliation:

Luting Wu

Abstract:

Background: Reprogramming of fast-to-slow myofiber switch can improve endurance capacity and alleviate fatigue. Accumulating evidence suggests that a muscle-specific microRNA, miR-499 plays a crucial role in myofiber type transition. In this study, we assessed the effects of natural flavonoid myricetin on exercise endurance and muscle fiber constitution, and further investigated the underlying mechanism of myricetin in vivo and in vitro.

Methods: A total of 66 six-week-old male Sprague Dawley rats were divided into non-exercise or exercise groups with/without orally administered myricetin (50 or 150 mg/kg) for 2 or 4 weeks. Time-to-exhaustion, blood biochemical parameters, muscle fiber type proportion, the expression of muscle type decision related genes were measured. Mimic/ inhibitor of miR-499 were transfected into cultured L6 myotubes, the expressions of muscle type decision related genes and mitochondrial respiration capacity were investigated.

Results: Myricetin treatment significantly improved the time-to-exhaustion in trained rats. The enhancement of endurance capacity was associated with an increase of the proportion of slow-twitch myofiber in both soleus and gastrocnemius muscles. Importantly, myricetin treatment amplified the expression of miR-499 and suppressed the expression of Sox6, the down-stream target gene of miR-499, both in vivo and in vitro. Furthermore, inhibition of miR-499 overturned the effects of myricetin on down-regulating Sox6.

Conclusions: Myricetin promoted the reprogramming of fast-to-slow muscle fiber type switch and reinforced the exercise endurance capacity. The precise mechanisms responsible for the effects of myricetin are not resolved but likely involve regulating miR-499/Sox6 axis.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.