Abstract Title:

Melatonin modulates signal transduction pathways and apoptosis in experimental colitis.

Abstract Source:

J Pineal Res. 2006 Nov;41(4):363-73. PMID: 17014694

Abstract Author(s):

Emanuela Mazzon, Emanuela Esposito, Concetta Crisafulli, Luisa Riccardi, Carmelo Muià, Paolo Di Bella, Rosaria Meli, Salvatore Cuzzocrea

Article Affiliation:

Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Italy.

Abstract:

Various evidences have documented that the pineal secretory product melatonin exerts an important anti-inflammatory effect in different experimental models including colitis. The aim of the present study was to evaluate whether melatonin regulates the inflammatory response of experimental colitis in rats at the level of signal transduction pathway. Colitis was induced by intracolonic instillation of dinitrobenzene sulfonic acid (DNBS). Four days after DNBS administration, a substantial increase of colon TNF-alpha production was associated with the colon damage. In DNBS-treated rats, the colon injury correlated with a significant rise of apoptosis (evaluated by TUNEL coloration) which was associated with a significant increased expression of proapoptotic Bax and decreased colon content of antiapoptotic Bcl-2. This inflammatory response was also related to activation of nuclear factor-kappaB (NF-kappaB) and phosphorylation of c-Jun as well as FAS ligand expression in the colon. Treatment with melatonin (15 mg/kg daily i.p.) was associated with a remarkable amelioration of colonic disrupted architecture as well as a significant reduction of TNF-alpha. Melatonin also reduced the NF-kappaB activation and phosphorylation of c-Jun as well as the Fas ligand expression in the colon. Furthermore, melatonin reduced the expression of Bax and prevented the loss of Bcl-2 proteins as well as the presence of apoptotic cells caused by DNBS. The results of this study show that melatonin administration exerts beneficial effects in inflammatory bowel disease by modulating signal transduction pathways.

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.