n/a
Abstract Title:

Inhibitory effect of silibinin on Amadori-albumin in diabetes mellitus: A multi-spectroscopic and biochemical approach.

Abstract Source:

Spectrochim Acta A Mol Biomol Spectrosc. 2019 Feb 15 ;209:217-222. Epub 2018 Oct 27. PMID: 30399482

Abstract Author(s):

Km Neelofar, Zarina Arif, Jamal Ahmad, Khursheed Alam

Article Affiliation:

Km Neelofar

Abstract:

Due to increased understanding of the damaging effects of glycation process, it is highly desirable to manage this process effectively either by prevention or by managing the consequences of glycation preferentially at early stage. The use of potential naturally occurring compounds as anti-glycating agents may provide an effective approach to control the development and progression of diabetic associated complications. In the present study, human serum albumin (albumin) was co-incubated with glucose and different concentrations of silibinin. Silibinin was demonstrated to possess anti-glycation activity. We found that silibinin inhibits glucoseinduced glycation at an early stage. We analyzed the effect of silibinin on albumin structure and its biochemical properties at early stage of glycation through various biophysical and biochemical techniques. Nitro blue tertazolium assay results showed that fructosamine formation was reduced in the presence of silibinin. UV-visible spectra results showed decrease in the absorbance with increasing concentrations of silibinin towards native albumin absorbance. Fluorescence results showed that the intensity was increased with increasing the silibinin concentrations as compared to Amadori-albumin. In addition, Far-UV CD spectra demonstrated some restoration ofα-helicity when albumin was incubated with glucose in the presence of silibinin. Moreover, silibinin caused significant reduction in carbonyl contents with concomitant increase in free thiol, lysine and arginine residues. The anti-glycation activity of silibinin was concentration-dependent. From all the observations, we can conclude that silibinin might be acting as an obstacle in the binding of glucose with albumin and thus preventing the glycation induced changes in albumin. Silibinin may be effective in delaying glycation mediated pathologies in diabetic individuals.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.