Abstract Title:

A supercritical-CO2 extract of Ganoderma lucidum spores inhibits cholangiocarcinoma cell migration by reversing the epithelial-mesenchymal transition.

Abstract Source:

Phytomedicine. 2016 May 15 ;23(5):491-7. Epub 2016 Mar 3. PMID: 27064008

Abstract Author(s):

Lian Li, Hui-Jun Guo, Ling-Yan Zhu, Limin Zheng, Xin Liu

Article Affiliation:

Lian Li

Abstract:

BACKGROUND: Ganoderma lucidum (G. lucidum) is an oriental medical mushroom that has been widely used in Asian countries for centuries to prevent and treat different diseases, including cancer.

HYPOTHESIS/PURPOSE: The objective of this study was to investigate the effect of A supercritical-CO2 extract of G. lucidum spores on the transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) of cholangiocarcinoma cells.

STUDY DESIGN: This was an in vitro study with human cholangiocarcinoma TFK-1 cells treated with varying concentrations of G. lucidum.

METHODS: A supercritical-CO2 extract of G. lucidum spores (GLE) was obtained from completely sporoderm-broken germinating G. lucidum spores by supercritical fluid carbon dioxide (SCF-CO2) extraction. GLE pre-incubated with human cholangiocarcinoma TFK-1 cells prior to TGF-β1 treatment (2ng/ml) for 48h. Changes in EMT markers were analyzed by western blotting and immunofluorescence. The formation of F-actin stress fibers was assessed via immunostaining with phalloidin and examined using confocal microscopy. Additionally, the effect of the GLE on TGF-β1-induced migration was investigated by a Boyden chamber assay.

RESULTS: TGF-β1-induced reduction in E-cadherin expression was associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin and Fibronectin were evident in predominantly elongated fibroblast-like cells. The GLE suppressed the TGF-β1-induced morphological changes and the changes in cadherin expression, and also inhibited the formation of F-actin stress fibers, which are a hallmark of EMT. The GLE also inhibited TGF-β1-induced migration of TFK-1 cells.

CONCLUSION: Our findings provide new evidence that GLE suppress cholangiocarcinoma migration in vitro through inhibition of TGF-β1-induced EMT. The GLE may be clinically applied in the prevention and/or treatment of cancer metastasis.

Study Type : Human In Vitro

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.