Abstract Title:

Dietary lycopene and tomato extract supplementations inhibit nonalcoholic steatohepatitis-promoted hepatocarcinogenesis in rats.

Abstract Source:

Int J Cancer. 2010 Apr 15 ;126(8):1788-96. PMID: 19551842

Abstract Author(s):

Yan Wang, Lynne M Ausman, Andrew S Greenberg, Robert M Russell, Xiang-Dong Wang

Article Affiliation:

Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.


Epidemiological and experimental studies provide supportive evidence that lycopene (LY), a major carotenoid from tomatoes and tomato products, may act as a chemopreventive agent against certain types of cancers. We recently showed that high-fat diet (HFD)-induced nonalcoholic steatohepatitis (NASH) promoted diethylnitrosamine (DEN)-initiated hepatocarcinogenesis in a rat model. Using this model, we investigated the efficacy of an equivalent dosage of dietary LY from either a pure compound or a tomato extract (TE) against NASH-promoted hepatocarcinogenesis. Six groups of rats were injected with DEN and then fed either Lieber-DeCarli control diet or HFD with or without LY or TE for 6 weeks. Results showed that both LY and TE supplementations significantly decreased the number of altered hepatic foci expressing the placental form of glutathione S-transferase in the livers of HFD-fed rats. This was associated with significantly lower proliferating cell nuclear antigen positive hepatocytes and cyclinD1 protein, as well as decreased activation of extracellular signal-regulated kinase and nuclear NF-kappaB. Although both LY and TE supplementations reduced HFD-induced lipid peroxidation in the livers, we observed significantly decreased cytochrome P450 2E1, inflammatory foci and mRNA expression of proinflammatory cytokines (TNF-alpha, IL-1beta and IL-12) in the HFD+TE fed group but increased nuclear NF-E2-related factor-2 and heme oxygenase-1 proteins in the HFD+LY fed group, relative to HFD feeding alone. These data indicate that LY and TE can inhibit NASH-promoted hepatocarcinogenesis mainly as a result of reduced oxidative stress, which could be fulfilled through different mechanisms.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.