n/a
Abstract Title:

Proteasome mediated degradation of CDC25C and Cyclin B1 in Demethoxycurcumin treated human glioma U87 MG cells to trigger G2/M cell cycle arrest.

Abstract Source:

Toxicol Appl Pharmacol. 2018 10 1 ;356:76-89. Epub 2018 Aug 4. PMID: 30009775

Abstract Author(s):

Neetika Lal, Vishal Nemaysh, Pratibha Mehta Luthra

Article Affiliation:

Neetika Lal

Abstract:

Recently, we have reported that Demethoxycurcumin induced Reactive oxygen species via inhibition of Mitochondrial Superoxide Dismutase is an initial event to trigger apoptosis through caspase-8 and 9 activation and to inhibit Akt/NF-κB survival signaling in human glioma U87 MG cells (Kumar et al., 2018). Although cell-cycle disruption had been suggested to be the possible mechanism for DMC inhibitory effect on human glioma U87 MG cells, comprehensive mechanisms of cell-cycle arrest caused by DMC are not fully understood. The present study was designed to elucidate the DMC induced mechanism of cell cycle arrest in human glioma U87 MG cells. In this study, the results illustrated that DMC induced Reactive oxygen species (ROS) leads to reduced expression of CDC25C, Cyclin B1 and CDK1 (Thr161) triggers G2/M cell cycle arrestin U87 MG glioma cells. Moreover, the DMC induced ROS generation activates ubiquitination and proteasome degradation of CDC25C and Cyclin B1 in U87MG glioma cells. In addition, the immunoprecipitation results showed that significant dissociation of CDK1or CDC2-Cyclin B1 complex leads to G2/M cell cycle arrest. To explore the possibility of direct involvement of DMC in the dissociation of CDK1/Cyclin B1 complex, the molecular docking and MD simulation studies were carried. The results showed that DMC nicely fitted into the binding site of CDK1 and Cyclin B1 with minimum binding energy (ΔG) of-9.46 kcal/mol (Ki = 0.11 μM) and - 9.90 kcal/mol (Ki = 0.05 μM) respectively. Therefore, this is the first study demonstrating CDC25C and Cyclin B1 proteins could be used as potential target for anticancer therapy and DMC may be explored as new therapeutic agent in the cure of Glioblastoma (GBM).

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.