Abstract Title:

Curcumin inhibits reactive oxygen species formation and vascular hyperpermeability following haemorrhagic shock.

Abstract Source:

Clin Exp Pharmacol Physiol. 2010 Sep;37(9):939-44. Epub 2010 May 28. PMID: 20528978

Abstract Author(s):

Binu Tharakan, Felicia A Hunter, W Roy Smythe, Ed W Childs

Article Affiliation:

Department of Surgery, Texas A&M Health Science Center College of Medicine, Scott&White Memorial Hospital, Temple, Texas 76508, USA.

Abstract:

1. Oxidative stress induced by reactive oxygen species (ROS) is a key mediator of haemorrhagic shock (HS)-induced vascular hyperpermeability. In the present study, curcumin, a natural anti-oxidant obtained from turmeric (Curcuma longa), was tested against HS-induced hyperpermeability and associated ROS formation in rat mesenteric post-capillary venules in vivo and in rat lung microvascular endothelial cells (RLMEC) in vitro. 2. In rats, HS was induced by withdrawing blood to reduce mean arterial pressure to 40 mmHg for 60 min, followed by resuscitation for 60 min. To investigate vascular permeability, rats were given fluorescein isothiocyanate (FITC)-albumin (50 mg/kg, i.v.). The FITC-albumin flux was measured in mesenteric post-capillary venules by determining optical intensity intra- and extravascularly under intravital microscopy. Mitochondrial ROS formation was determined using dihydrorhodamine 123 in vivo. Parallel studies were conducted in vitro using serum collected after HS. The serum was tested on rat lung microvascular endothelial cell RLMEC monolayers. 3. In rats, HS induced a significant increase in vascular hyperpermeability and ROS formation in vivo (P<0.05). Treatment with curcumin (20 micromol/L) attenuated both these effects (P<0.05). In RLMEC in vitro, HS serum induced monolayer permeability and ROS formation. Curcumin (10 micromol/L) attenuated HS serum-induced monolayer hyperpermeability and ROS formation. Curcumin (2-100 micromol/L) scavenged 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) and 1,1-diphenyl-2-picrylhydrazyl radicals in vitro, indicating its potential as a free radical scavenger. 4. The present study demonstrates that curcumin is an inhibitor of vascular hyperpermeability following HS, with its protective effects mediated through its anti-oxidant properties.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.