n/a
Article Publish Status: FREE
Abstract Title:

Combinations of griffithsin with other carbohydrate-binding agents demonstrate superior activity against HIV Type 1, HIV Type 2, and selected carbohydrate-binding agent-resistant HIV Type 1 strains.

Abstract Source:

AIDS Res Hum Retroviruses. 2012 Nov ;28(11):1513-23. Epub 2012 Jun 25. PMID: 22607556

Abstract Author(s):

Geoffrey Férir, Dana Huskens, Kenneth E Palmer, Daniel M Boudreaux, Michael D Swanson, David M Markovitz, Jan Balzarini, Dominique Schols

Article Affiliation:

Geoffrey Férir

Abstract:

Carbohydrate-binding agents (CBAs) are potential HIV microbicidal agents with a high genetic barrier to resistance. We wanted to evaluate whether two mannose-specific CBAs, recognizing multiple and often distinct glycan structures on the HIV envelope gp120, can interact synergistically against HIV-1, HIV-2, and HIV-1 strains that were selected for resistance against particular CBAs [i.e., 2G12 mAb and microvirin (MVN)]. Paired CBA/CBA combinations mainly showed synergistic activity against both wild-type HIV-1 and HIV-2 but also 2G12 mAb- and MVN-resistant HIV-1 strains as based on the median effect principle with combination indices (CIs) ranging between 0.29 and 0.97. Upon combination, an increase in antiviral potency of griffithsin (GRFT) up to∼12-fold (against HIV-1), ∼8-fold (against HIV-2), and ∼6-fold (against CBA-resistant HIV-1) was observed. In contrast, HHA/GNA combinations showed additive activity against wild-type HIV-1 and HIV-2 strains, but remarkable synergy with HHA and GNA was observed against 2G12 mAb- and MVN-resistant HIV-1 strains (CI, 0.64 and 0.49, respectively). Overall, combinations of GRFT and other CBAs showed synergistic activity against HIV-1, HIV-2, and even against certain CBA-resistant HIV-1 strains. The CBAs tested appear to have distinct binding patterns on the gp120 envelope and therefore do not necessarily compete with each other's glycan binding sites on gp120. As a result, there might be no steric hindrance between two different CBAs in their competition for glycan binding (except for the HHA/GNA combination). These data are encouraging for the use of paired CBA combinations in topicalmicrobicide applications (e.g., creams, gels, or intravaginal rings) to prevent HIV transmission.

Study Type : In Vitro Study
Additional Links
Pharmacological Actions : Anti-HIV Agents : CK(111) : AC(63)

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.