Abstract Title:

Aldehydic components of cinnamon bark extract suppresses RANKL-induced osteoclastogenesis through NFATc1 downregulation.

Abstract Source:

Bioorg Med Chem. 2008 Oct 15;16(20):9176-83. Epub 2008 Sep 14. PMID: 18823786

Abstract Author(s):

Kentaro Tsuji-Naito

Abstract:

Several major bone diseases are directly attributable to bone loss, including osteoporosis, bone metastasis, and rheumatoid arthritis. The nuclear factor of activated T cell 1 (NFATc1), a transcription factor, has recently been shown to play an essential role in osteoclastogenesis. In this study, we found that of several herbs, Cinnamomum zeylanicum (C. zeylanicum) exhibited the strong inhibitory effects on osteoclastogenesis and that its mechanism of action involves the suppression of NFATc1-mediated signal transduction. C. zeylanicum dose-dependently inhibited osteoclast-like cell formation at concentrations of 12.5-50 microg/ml without affecting cell viability. Resorption pit assays have shown that C. zeylanicum also inhibits the bone-resorbing activity of mature osteoclasts. Treatment with C. zeylanicum inhibited the receptor activator of nuclear factor-kappaB ligand (RANKL)-induced NFATc1 and c-fos expression. Additionally, C. zeylanicum moderately inhibited phosphorylation of IkappaB-alpha, suggesting that the c-fos/NFATc1 pathway, rather than the nuclear factor-kappaB (NF-kappaB) pathway, is the primary target of C. zeylanicum during RANKL-induced osteoclastogenesis. Using an HPLC-DAD system, we identified three major peaks for four characteristic components in the C. zeylanicum extract and identified an unknown peak as 2-methoxycinnamaldehyde via HPLC and a 2D-COSY (1)H NMR study. We identified cinnamaldehyde and 2-methoxycinnamaldehyde as active components reducing osteoclast-like cell formation and inhibiting NFATc1 expression. Notably, in a resorption pit assay, 2-methoxycinnamaldehyde exhibited remarkable inhibition rates of 95% at 2 microM on bone resorption. In summary, this study points to the conclusion that C. zeylanicum inhibits RANKL-induced osteoclastogenesis. This finding raises prospects for the development of a novel approach in the treatment of osteopenic disease.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.