n/a
Abstract Title:

Chrysin mitigates bleomycin-induced pulmonary fibrosis in rats through regulating inflammation, oxidative stress, and hypoxia.

Abstract Source:

Int Immunopharmacol. 2020 Oct 9 ;89(Pt A):107011. Epub 2020 Oct 9. PMID: 33045575

Abstract Author(s):

Mohammed O Kseibati, Maha H Sharawy, Hatem A Salem

Article Affiliation:

Mohammed O Kseibati

Abstract:

Pulmonary fibrosis is a chronic condition characterized by fibroblast proliferation, and the infiltration of inflammatory cells that can initiate local tissue hypoxia. In this study the effect of chrysin (50 mg/kg/orally) in a model of bleomycin (BLM)-induced pulmonary fibrosis was studied. Chrysin managed to decrease mortality rate associated with BLM instillation and it managed to improve lung architecture and lung fibrosis by decreasing hydroxyproline content and transforming growth factor-β1 (TGF-β1) protein expression. Chrysin showed anti-inflammatory effect displayed by the decrease in inflammatory cells infiltrates, the decline in permeability of the alveolar/capillary barrier and the reduction in lactate dehydrogenase (LDH) activity. Chrysin demonstrated potent antioxidant effect by decreasing lipid peroxidation, increasing antioxidant defense mechanisms by increasing superoxide dismutase (SOD) activity and reduced glutathione (GSH) content. Additionally, the effect of chrysin on nitric oxide (NOx) content was assessed, where chrysin decreased NOx, increased the protein expression of endothelial nitric oxide synthase (eNOS), and decreased inducible nitric oxide synthase (iNOS) protein expression. Chrysin also succeeded in decreasing thioredoxin-interacting protein (TXNIP), the negative regulator of thioredoxin system, showing potent antioxidant effect. Finally, both tissueand bronchoalveolar lavage fluid contents of hypoxia inducible factor one alpha (HIF1α) were decreased by chrysin indicating that chrysin decreased local tissue hypoxia. In conclusion, this study exposed a possible proof that chrysin could mitigate pulmonary fibrosis induced by BLM through its anti-inflammatory, antioxidant, antifibrotic effects and its effect in alleviating hypoxia.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.