Article Publish Status: FREE
Abstract Title:

Boswellia frereana suppresses HGF-mediated breast cancer cell invasion and migration through inhibition of c-Met signalling.

Abstract Source:

J Transl Med. 2018 Oct 12 ;16(1):281. Epub 2018 Oct 12. PMID: 30314527

Abstract Author(s):

Christian Parr, Ahmed Y Ali

Article Affiliation:

Christian Parr


BACKGROUND: Hepatocyte growth factor (HGF) plays a pivotal role in breast cancer cell motility, invasion and angiogenesis. These pro-metastatic events are triggered through HGF coupling and activation of the c-Met receptor. Reports have demonstrated that HGF/c-Met signalling plays an important part in breast cancer progression and that their expression is linked to poor patient outcome. In the present study, we investigated the anti-metastatic potential of an extract from traditional Somalian frankincense, Boswellia frereana, on human breast cancer cells. In addition, we also examined the effect of this Boswellia frereana extract (BFE) upon HGF-mediated stimulation of the c-Met receptor.

METHODS: Two triple negative human breast cancer cell lines, BT549 and MDA-MB-231, were utilised in the study to examine the effect of BFE on tumour cell proliferation, migration, matrix-adhesion, angiogenesis and invasion. Cell migration was investigated using a Cell IQ time-lapsed motion analysis system; while tumour cell-matrix adhesion, angiogenesis and invasion were assessed through Matrigel-based in vitro assays. Breast cancer cell growth and spheroid formation was examined through proliferation assay and 3D non-scaffold cell culture techniques. Western Blotting was employed to determine the phosphorylation status of the c-Met receptor tyrosine kinase following BFE treatment and subsequent HGF stimulation.

RESULTS: Following HGF treatment, the breast cancer cells displayed a significant increase in migration, matrix adhesion, vessel/tubule formation, invasion and c-Met activation. HGF did not appear to have any bearing on the proliferation rate or spheroid formation of these breast cancer cells. The addition of the BFE extract quenched the HGF-enhanced migratory, angiogenic and invasive potential of these cells. Further study revealed that BFE inhibited c-Met receptor tyrosine kinase phosphorylation within these breast cancer cells.

CONCLUSIONS: Our findings reveal that BFE was able to significantly suppress the influence of HGF in breast cancer cell motility and invasion in vitro, through the ability of BFE to reduce HGF/c-Met signalling events. Therefore, these results indicate that BFE could play a novel role in the treatment of breast cancer.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.