n/a
Abstract Title:

Astragaloside IV, a Natural PPARγ Agonist, Reduces Aβ Production in Alzheimer's Disease Through Inhibition of BACE1.

Abstract Source:

Mol Neurobiol. 2017 May ;54(4):2939-2949. Epub 2016 Mar 29. PMID: 27023226

Abstract Author(s):

Xu Wang, Yue Wang, Jiang-Ping Hu, Song Yu, Bao-Kun Li, Yong Cui, Lu Ren, Li-De Zhang

Article Affiliation:

Xu Wang

Abstract:

A number of epidemiological studies have established a link between Alzheimer's disease (AD) and diabetes mellitus (DM). So, nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in the treatment of AD. However, current PPARγ-targeting drugs such as thiazolidinediones (TZDs) are associated with undesirable side effects. We identified herbal extract with a small molecular, astragaloside IV (AS-IV), as a selective PPARγ natural agonist in nervouscells by developing a PPAR-PPRE pathway regulatory system. Cultured SH-SY5Y cells transfected with pEGFP-N1-BACE1 were treated with AS-IV for 24 h or AS-IV plus the PPAR-γ antagonist GW9662 in vitro. APP/PS1 mice were intragastrically treated with AS-IV or AS-IV plus the GW9662 every 48 h for 3 months. Immunofluorescence, western blotting, and real-time PCR were used to examine the expression of PPARγ and BACE1. Immunohistochemical staining was performed to analyze the distribution of Aβ plaques in the APP/PS1 mouse brain. The levels of Aβ were determined using ELISA kits. AS-IV was shown to be a PPARγ agonist by establishing a high-throughput screening model for PPARγ agonists. The results showed that AS-IV treatment increased activity of PPARγ and inhibited BACE1 in vitro. As a result, Aβ levels decreased significantly. GW9662, which is a PPARγ antagonist, significantly blocked the beneficial role of AS-IV. In vivo, AS-IV treatment increased PPARγ and BACE1 expression and reduced neuritic plaque formation and Aβ levels in the brains of APP/PS1 mice. These effects of AS-IV could be effectively inhibited by GW9662. These results indicate that AS-IV may be a natural PPARγ agonist that suppressed activity of BACE1 and ultimately attenuates generation of Aβ. Therefore, AS-IV may be a promising agent for modulating Aβ-related pathology in AD.

Study Type : Animal Study, In Vitro Study
Additional Links

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.