Article Publish Status: FREE
Abstract Title:

Antidepressant-Like and Neuroprotective Effects of Ethanol Extract from the Root Bark ofL.

Abstract Source:

Biomed Res Int. 2018 ;2018:7383869. Epub 2018 Nov 19. PMID: 30581865

Abstract Author(s):

Young Hwa Kim, A-Rang Im, Bo-Kyung Park, Seung Ho Paek, Goya Choi, Yu Ri Kim, Wan Kyunn Whang, Kang Hee Lee, Seung-Eun Oh, Mi Young Lee

Article Affiliation:

Young Hwa Kim


L. (Malvaceae) is an important ornamental shrub in horticulture and has been widely used as a medical material in Asia. The aim of this study was to assess the antidepressant and neuroprotective effects of a root bark extract of(HSR) and to investigate the underlying molecular mechanisms. Using an animal model of restraint stress, we investigated the effects of HSR on depressive-like behaviors and on the expression levels of serotonin, corticosterone, and neurotrophic factors in the brain. The mice were exposed to restraint stress for 2 h per day over a period of 3 weeks and orally treated with HSR (100, 200, or 400 mg/kg/day). We also examined the neuroprotective effect of HSR using corticosterone-treated human neuroblastoma SK-N-SH cells. The cells were incubated with the extract for 24 h, followed by corticosterone stimulation for 1 h, and then cell viability assay, cellular ATP assay, mitochondrial membrane potential (MMP) assay, cellular reactive oxygen species (ROS) assay, and western blotting were used to investigate the neuroprotective effects of HSR. Administration of HSR not only reduced the immobility times of the restraint-stressed mice in the forced swimming and tail suspension tests, but also significantly increased sucrose preference in the sucrose preference test. In addition, HSR significantly reduced the plasma levels of corticosterone and increased the brain levels of serotonin. The extract also increased the phosphorylation level of cyclic AMP response element-binding (CREB) protein and the expression level of brain-derived neurotrophic factor (BDNF). The in vitro assays showed that HSR pretreatment increased cell viability and ATP levels, recovered MMP, decreased ROS levels, and increased the expression of CREB and BDNF in corticosterone-induced neurotoxicity. Taken together, our data suggest that HSR may have the potential to control neuronal cell damage and depressive behaviors caused by chronic stress.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.