n/a
Article Publish Status: FREE
Abstract Title:

Anti-Metabolic Syndrome Effects of Fucoidan fromvia Reactive Oxygen Species-Mediated Regulation of JNK, Akt, and AMPK Signaling.

Abstract Source:

Molecules. 2019 Sep 12 ;24(18). Epub 2019 Sep 12. PMID: 31547311

Abstract Author(s):

Xueliang Wang, Xindi Shan, Yunlou Dun, Chao Cai, Jiejie Hao, Guoyun Li, Kaiyun Cui, Guangli Yu

Article Affiliation:

Xueliang Wang

Abstract:

Recent studies have reported that dietary fiber improved metabolic syndrome (MetS). However, the effects of fucoidans on MetS were still not clear. In this study, we evaluated the activity of fucoidan from(FvF) on attenuating MetS and first elucidated the underlying mechanism. In vitro, FvF treatment remarkably lowered the level of reactive oxygen species (ROS) compared with the sodium palmitate (PA)-induced insulin resistance (IR) group. The phosphorylation level of c-Jun N-terminal kinase (JNK) was significantly decreased, while phosphorylation of protein kinase B (pAkt) level increased, compared with that of the HepG2 cells treated with PA. Thus, FvF increased glucose consumption and relieved IR via ROS-mediated JNK and Akt signaling pathways. In addition, these changes were accompanied by the activation of adenosine 5'-monophosphate-ativated protein kinase (AMPK) and its downstream targets (e.g., HMG-CoA reductase (HMGCR), acetyl-CoA carboxylase (ACC), and sterol-regulatory element-binding protein-1c (SREBP-1C)), which improved lipid metabolism in IR HepG2 cells. In vivo, FvF improved hyperglycemia and decreased serum insulin level in mice with MetS. Furthermore, we evaluated the inhibition of glucose transport by in vitro (Caco-2 monolayer model), semi-in vivo (everted gut sac model) and oral glucose tolerance test (OGTT), which indicated that FvF could significantly reduce the absorption of glucose into the blood stream, thus it could improve blood-glucose levels and IR in mice with MetS. Moreover, FvF decreased serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) levels and liver lipid accumulation, while increased the serum high density lipoprotein cholesterol (HDL-C) level in mice with MetS. Therefore, FvF could be considered as a potential candidate for the treatment of MetS by alleviating IR, inhibiting glucose transportation, and regulating lipid metabolism.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.