Article Publish Status: FREE
Abstract Title:

Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231.

Abstract Source:

Biochim Biophys Acta. 2015 Mar ;1852(3):429-41. Epub 2014 Dec 13. PMID: 25514746

Abstract Author(s):

Hana Sharaf, Sabine Matou-Nasri, Qiuyu Wang, Zaki Rabhan, Hamad Al-Eidi, Abdulkareem Al Abdulrahman, Nessar Ahmed

Article Affiliation:

Hana Sharaf


Diabetic patients have increased likelihood of developing breast cancer. Advanced glycation endproducts (AGEs) underlie the pathogenesis of diabetic complications but their impact on breast cancer cells is not understood. This study aims to determine the effects of methylglyoxal-derived bovine serum albumin AGEs (MG-BSA-AGEs) on the invasive MDA-MB-231 breast cancer cell line. By performing cell counting, using wound-healing assay, invasion assay and zymography analysis, we found that MG-BSA-AGEs increased MDA-MB-231 cell proliferation, migration and invasion through Matrigel™ associated with an enhancement of matrix metalloproteinase (MMP)-9 activities, in a dose-dependent manner. Using Western blot and flow cytometry analyses, we demonstrated that MG-BSA-AGEs increased expression of the receptor for AGEs (RAGE) and phosphorylation of key signaling protein extracellular signal-regulated kinase (ERK)-1/2. Furthermore, in MG-BSA-AGE-treated cells, phospho-protein micro-array analysis revealed enhancement of phosphorylation of the ribosomal protein 70 serine S6 kinase beta 1 (p70S6K1), which is known to be involved in protein synthesis, the signal transducer and activator of transcription (STAT)-3 and the mitogen-activated protein kinase (MAPK) p38, which are involved in cell survival. Blockade of MG-BSA-AGE/RAGE interactions using a neutralizing anti-RAGE antibody inhibited MG-BSA-AGE-induced MDA-MB-231 cell processes, including the activation of signalingpathways. Throughout the study, non-modified BSA had a negligible effect. In conclusion, AGEs might contribute to breast cancer development and progression partially through the regulation of MMP-9 activity and RAGE signal activation. The up-regulation of RAGE and the concomitant increased phosphorylation of p70S6K1 induced by AGEs may represent promising targets for drug therapy to treat diabetic patients with breast cancer.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.